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The behaviour of the solutions of linear hyperbolic equations is investigated as ¢~ oo in the half-space x>0,
o<y, <o, a=1,2,...,r with boundary conditions defined on the boundary x = 0. The equations and
the boundary condition are assumed to be homogeneous with respect to the order of differentiation and all
coefficients are assumed to be constant. A problem of this type has been previously studied in detail in
connection with the stability of shock waves in gas dynamics [1-4] and some particular results have also
been obtained for magnetohydrodynamic shocks [5-7].

In general, as will be shown below, the disturbances may have the same types of behaviour as t— « as in
{2, 4]: the disturbances increase exponentiaily {instability), decay as a power function (stability), or remain
bounded {neutral stability). The transitions of the system to an unstable, stable, and neutrally stable state
are investigated and the criteria for these transitions are derived. These criteria are used to establish the
existence of neutrally stable magnetohydrodynamic shocks even in the case of an ideal gas, a phenomenon
that has not been previously documented [5-7]. The existence of an a priori bound on the solution has been
proved for these systems in cases of stability and neutral stability [8, 9].

The interaction of disturbances with the boundary in the case of neutral stability produces a non-smooth
solution, so that the a priori bound of [9] is unimprovable. An elementary explanation of this effect is
proposed. It is shown that the addition of small non-differential terms to the equations and the boundary
conditions does not cause the problems to become ill-posed if the parameters of the original problem ensure
neutral stability.

The behaviour of disturbances on the boundary of the half-space is described by the solution of the
Cauchy problem for some systems of partial differential equations of a high order with special conditions on
the external forces and the initial values. This result is similar to that observed in gas dynamics [10].

The stability of solutions with boundary conditions at x = 0 for x>0 and x< 0 is analysed similarly and
does not require a separate treatment.

1. FORMAL CONSTRUCTION OF THE FOURIER-LAPLACE SOLUTION
For a system of linear hyperbolic equations with constant coefficients
E at+A +B"°a =0, a-=12,...r 1.1

(U is a column vector and E, A, B are n X n matrices) in the haif-space x>0, —o <y, <o, consider
the mixed boundary-value problem

t—0:U = Uy (@, ya) (1.2)
35‘2‘-‘-1"), DEI"‘-‘““LC +D{z
E>0, 2> 00 iU}<:oo
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Stability of solutions of boundary-value problems 37

Here E,;, C and D,, are constant m X n matrices, m <n. The number m of boundary conditions for
x = 0 is chosen so that the problem is well-posed [11] (see below).

We will solve problem (1.1), (1.2) by applying a Fourier transformation to the function
U(x, yq, t) with respect to the variables y, and a Laplace transformation with respect to the variable
t. Thus

o0

UL (I’ 2, ka) S e—ikaya dyl L dyr '21? S U (xa Yoo t) et dt

<2n)

Setting z = —ikQ, k = (ki +k,*+ . . . + k,*)"2 (1 is the phase velocity of propagation of waves in
the direction of the vector k perpendicular to the x-axis), we rewrite problem (1.1), (1.2) in the form

dut K
AL | ik(B—OB) UL = EU," (v, k), (B =12 B. ) (1.3)
- k
r=0:CL 4 ik (D — QB U" = B, (0, k), (Da - te Da> (1.4)
z— oo | Ul | << o0 (1.5)

where Uyf (x, k, ) is the Fourier transform of the function Uy (x, y, ). Further analysis is conducted
for fixed values of the wave-vector components {k, }.
The characteristic matrix of the system of equations (1.3) has the form

M, = Al (B — kQE) + kAE

The roots A, of the characteristic equation detM, = 0 are independent of k because system (1.1) is
homogeneous with respect to the order of differentiation. Since system (1.1) is hyperbolic, it follows
that as 0— o the matrix M, has » linearly independent eigenvectors 19 that correspond to the roots
A = \; which are real for real (2. For () = O(1), the roots A\; may become complex and there exists a
set of isolated values Q,° such that \;(Q°) = X;(2") and 19(Q°) |19 (2°). Therefore, for all other
Q) the solution of system (1.3) obtained by the method of variation of constants is written in the form

- jEIl Cjol(j)ef).jkx + 2‘1 l(f)eikikaj ((I?)
= Jj=
x . (1.6)
Rj(a) = | [LAU,) e M de
*

Here L is the n X n matrix whose columns are the eigenvalues 1’ and ¢;° are arbitrary constants to be
determined from conditions (1.4), (1.5). The constants x; will be chosen later.

All the roots of the characteristic equation are divided into two groups: the first group contains
the roots {\, }: ImA,>0 (g =1,2,...,s) and the second group the roots {Ai}: Im\,<0 (i=s+1,
s, +2, ..., n). This grouping is done for Im{)>1, i.e. in that part of the half-plane £ which
contains the integration path for the Laplace transform. Note that in order to separate the roots in
the entire -plane, we need to pass cuts I, ; between the branching points of the roots of the first and
the second groups. These points form the set ({)9) and are part of the previously introduced set
{Qy°} of branching points of the multivalued function X ().

We will show that the set {{)} lies on the real axis. Since system (1.1) is hyperbolic and
homogeneous with respect to the order of differentiation, its solutions have the stability property:
ImA #0 for Im{ > 0. The branching points of the roots from different groups therefore do not lie in
the upper € half-plane. The problem is reversible in time, which corresponds to a simultaneous sign
change of (), k, and \; therefore the branching points do not lie in the lower  half-plane either.

Substituting (1.6) into (1.5), we find that ¢°=0 (i=s+1, ..., n), and the constants c,° (g =
1, ...,s) are determined from system (1.5). A necessary condition for the problem to be well-posed
is thus the equality s = m [11]. The final result can be written in the form
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UL (@, kg, Q) = D) ¢1Pe™d™ - 3 1M R, (1.7)
g=1 j=1
¢ = W, IW,R, 4 iVOUGF (0, ko)), € = {cg} g = 1.2, ..., m
(W, Wy)=W, Wy = jgl DB g =1,2,...n¢=1,... m
G® = —QE' + A,C + D, VY -- —E! - VLA™

n
Va=2ClY, g=12...m, p=12....n
J=1
x
R;(2) = [ [L1AUS (&, ko] o™ d
x
i
0, ] = 1, [ (]
Rojsz‘x=01 Tj= 0o, j=m4+1,..an
The matrix W, is formed by the first m columns of the matrix W and corresponds to waves moving
away from the boundary. The matrix W, formed by the next n —m columns of W corresponds to
arriving waves.
Now, inverting the Laplace transform and shifting the integration contour down in the €)-plane as
shown in Fig. 1, we obtain an asymptotic expression for the solution for t— o, x = const:

U (1, 2, k) = 2 res Ule-thot 1 L Z S Uleihat 4Q (1.8)

ni
h
The summation is over all residues of the function U () and all cuts I, passed between the
branching points of the roots from different groups (a cut is shown in Fig. 1 by a dashed line). On
the right-hand side, we have omitted the rapidly decaying integral over the horizontal part of the
integration contour. We retain in (1.8) only the integrals over the cuts between the branching points
of the roots from different groups, because these roots occur in the solution of the problem in a
different form (the matrix W, contains only the first-group roots, while the matrix W, contains only
second-group roots).
Therefore, the solution U* changes as we move around the branching points of the roots from
different groups. When we circle the branching point of the roots from the same group, only the
indexing of the roots within the group changes and U* remains unchanged.

2. CONTRIBUTION OF THE INTEGRALS OVER THE CUTS TO THE ASYMPTOTIC
BEHAVIOUR

Let us study the asymptotic behaviour as t— o of the integrals over the cuts I, in equality (1.8).
The asymptotic behaviour as 1— « of the integrals over the cuts is determined only by the top-most
parts of the integration contours. Therefore, each branching point makes an independent
contribution to the asymptotic behaviour. If the two values of the function A () are equal at a
branching point, then the integrand U*(Q) (the arguments k, and x are assumed constant and
therefore omitted) can be represented in the form

===

FiG. 1.



Stability of solutions of boundary-value problems 39

UM (@) = Uk (@) + Ut (@) YO — &,

where () is a branching point and Uy* and U, are analytical functions. In the general position, the
function U,” takes a finite value for {2 = Q (this can be obtained from (1.7); for gas dynamics, see
[2]), and integration over the cut in the neighbourhood of the branching point produces the
principal asymptotic term of the form
—~loo
UF ()~ ct=hemibe, ¢ =20%(Q) | e VEdE, E=(Q—0y¢
]

If the function U,“(2) behaves as (Q — (y) !, which is possible in singular cases, when the pole
and the branching point of UX () coincide, then |UF(¢)|~ct ~?exp(—ik Qyt). These versions of
the asymptotic behaviour match the results of [2] for gas dynamics.

We note without derivation that along the rays x/t = const the asymptotic behaviour of the
solution is determined by the saddle point (as in the case without a boundary) and the time
dependence of the principal asymptotic term in the general position is typical of dispersing waves:
[UF(t)|~t~Y2 (for k, = const the waves have a dispersion along x). We thus conclude that the
existence of a boundary produces additional damping of the waves that propagate along the surface
of discontinuity and this in general leads to the asymptotic behaviour | UF(¢) | ~¢ =32

The explanation of this effect is that for disturbances propagating along the boundaries (and it is
these disturbances that correspond to the points ), see below) the reflection coefficient is —1. This
is attributable to the equality at the branching point of the eigenvectors of the matrix M, that
correspond to the incident and the reflected waves. The disturbance reflected from the boundary is
jointly annihilated with the incident disturbance in the principal term.

3. THE CONTRIBUTION OF RESIDUES TO THE ASYMPTOTIC BEHAVIOUR

The residues of the function UX((2), as follows from (1.7), are the zeros of the determinant
D,, = detW,. Having passed the cuts I,, we can select the single-valued branch of the function
D,.(Q), which is obtained by continuation from the upper () half-plane. It is this single-valued
branch that is considered in what follows.,

Let us investigate its behaviour on the real axis §. It follows from (1.7) that the function D,, is
real-valued on the sections of the real axis where all A corresponding to outgoing waves are real. On
the other hand, on the sections of the real axis () where at least one pair of complex-conjugate roots
A exists (these roots always belong to different groups, see Sec. 1), the function D,, is complex-
valued.

This follows from the fact that, for any pair of complex conjugate roots, only one root corresponds to
outgoing waves, and this root is included in D,,. In the general position, Im D, %0 since all the coefficients in
D,, are real.

As we have noted before, the hyperbolic type of the system implies that for large real 2 all A; and
D,.(Q) are real. By the Schwarz theorem of analytical continuation, the function D, () takes
complex-conjugate values at complex-conjugate points. If this function has complex roots, the
solution U (— ) contains a component that exponentially increases with time with a growth rate that
tends to infinity as k— o, i.e. problem (1.1), (1.2) is ill-posed. If D,, () has only real roots, then the
vector UF(¢) is bounded as t—> « and in general does not tend to zero {neutral stability).

4. THE CONDITIONS FOR A TRANSITION BETWEEN DIFFERENT TYPES OF
ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS

We will now give a geometrical interpretation of the results. To this end, consider the group
velocity diagram, which describes the propagation of a weak shock from a point source after a unit
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of time. Assume that the source is at the origin O (Fig. 2), the y-axis corresponds to the position of
the boundary x = 0, and the curve L is the group velocity diagram. The figure shows the part of the
diagram in the region x <0 (arriving waves).

Consider some point y = §} on the y-axis sufficiently far from the point O. Each tangent drawn
from () to L gives the direction of propagation of the wave corresponding to the chosen Q [€) is the
quantity from Eq. (1.3)]. The root A (2) of the characteristic equation corresponding to this wave is
real. With a complex A (Q), it is impossible to construct the corresponding tangent from the point
to L. If the tangency point (Qy° in Fig.2) lies to the right (to the left) of the y-axis, the
corresponding wave is an outgoing (arriving) wave with respect to the boundary.

As we have noted above, all \ are real for large (), i.e. n tangents to the group velocity diagram
may be drawn from the point y = Q. The branching points of the function U (2) arise only in cases
when () coincides with (y'—the point of intersection of the group velocity diagram with the y-axis.

Indeed, when the roots N coincide, the directions of the tangents drawn from the corresponding point
Q = Q' also coincide. If the tangency points do not coincide, then in the general position the eigenvectors
characterizing the waves that correspond to these points are different, and the solution U*(Q) does not have
singularities in the neighbourhood of the point {y'. On the other hand, the tangency points may coincide only
on the y-axis, because group velocity diagrams do not have points of inflection. The last assertion is a
consequence of the fact that for a hyperbolic system each direction of the normal corresponds to the same
number of characteristic velocities (which is equal to the order of the system).

Thus, on the real axis ), the number of real roots A (1) may change only at the point 2 = Q' that
correspond to the intersection of the group velocity diagram with the y-axis. These points delimit
schtions of the real axis () where all A () are real and they are the branching points of the function
U (Q).

Let us consider how the complex roots of D, (£2) can be shifted to the real axis by changing the
system parameters. When the last complex root reaches the real axis, the system passes from an
unstable to a stable or a neutrally stable state.

A root of D,, () may reach the real axis either at infinity or at a finite point of the axis. We will
start with the first case. Let Q— © as H— H®, where H is a vector in the space of the system
parameters. Then, by the hyperbolicity of system (1.1), \;~a;{}, where a; are the reciprocals of the
characteristic velocities, and D,, is reduced to a polynomial:

D, (Q) ~ bQ™ -+ 5,Q™* L, .. =0

where by— 0 as H— H°. Then as H— H° we obtain Q = —b, /by, bg—0.

In the general position, obo/dH? #0 for H=H° and therefore b, changes its sign in the
neighbourhood of the point H° as we cross the surface %, defined by the equation by(H,) = 0.
Therefore, ) remains real for k = 1 on both sides of the surface %, and the complex-valued root
does not go to the real axis. If k = 2, then Q = +i(b,/by)"? for b;/by>0 and Q is real for b, /by <0.
Thus, for k = 2, we have a transition from instability to neutral stability. For k = 2, the surface 3 is
the boundary between the zones of instability and neutral stability in the space of system
parameters. If k=3, then regardless of the sign of b, /b, for H close to H the function D,,(Q) has a
zero in the upper half-plane, i.e. the type of solution is preserved.

Note that the case k& = 2 is exceptional, because in general k = 1. However, there is an important group of



Stability of solutions of boundary-value problems 41

applied problems which are invariant under the change of y to —y (gas-dynamic shocks and some special cases
of MHD shocks). In these problems, D,, () is an even function.

Now suppose that as H— H° the complex-conjugate roots of the function D,, reach the real axis
at a finite point {), that lies outside the cuts ,,, which are now passed on the real axis {} between
branching points. Then D,, (2) has a multiple root at this point, and this root is of multiplicity two in
the general position. As the parameters are changed further, the roots become real. The surface 3,
in the space H on which this happens is another boundary between instability and neutral stability.

If the root crosses from the complex plane to the real axis on some cut I, , then further change of
the parameters causes the root to escape from the given sheet of the Riemannian surface and it
ceases to make a contribution to the solution.

Yet another possibility of the appearance of a real zero of the function D, ({2) is when the root
moves from the cut to the real axis. At the instant it reaches the real axis, the zero (a simple zero in
the general position) coincides with a branching point of the roots of the characteristic equation.
The coincidence of the zero with a branching point may constitute a boundary (in the parameter
space, this is some surface 2,) between stability [when D,,(Q2) does not have roots on the given
sheet of the Riemannian surface] and neutral stability [when the roots of D, (Q) are on the real
axis]. It is in this case that we obtain the asymptotic behaviour |U”|~¢ "2 noted in Sec. 2.

It follows from these results that the region of neutral stability Oy is of the same dimensions as the
parameter space of problem (1.1), (1.2). Therefore, for each interior point of parameter space,
problem (1.1), (1.2) is stable, i.e. small changes in the coefficients of system (1.1) and the boundary
conditions (1.2) for x = 0, £=0 do not produce a solution of a new type.

5. THE WELL-POSED FORM OF PROBLEMS, NON-HOMOGENEOUS WITH RESPECT TO
THE ORDER OF DIFFERENTIATION

If we modify the formulation of our problem by introducing additional non-differential terms into
Egs (1.1) and the boundary conditions (1.2), the problem will remain well-posed if the original
problem was well-posed. Indeed, since the ill-posed properties may manifest themselves for large
kQ, when the additional terms are small, the increment AQ of the root ); of the equation
D, () = 0 is obtained from the equality

a (AQ) + bkt =

where the first term is the principal part of the increment D,, (©;+ AQ) — D, (Q) (fis the multiplicity
of the root ;) and the second term is the value for ) = Q; of the additional terms that occur in the
equation for ) when the problem is modified as suggested above. The factor k™! is associated with
the lower order of differentiation of the additional terms compared with the original terms.

The transition to an ill-posed problem (and hence to instability) due to the appearance of new
terms is possible only when (); is a real root. If it is simple (f = 1), then AQ is of the order k™!, and
the corresponding increment kA() is bounded as k— . Thus, the problem remains well-posed in
this case, but instability with a bounded growth rate may arise. This conclusion does not apply for
f=2; however, as we have seen, the presence of a multiple real root {} corresponds to a boundary of
the stability region in parameter space.

Instability or ill-posed behaviour may also develop as a result of the displacement of a branching
point of the roots A(Q) from the real axis to the upper half-plane due to the appearance of
non-differential terms. In practice, this does not occur, however.

Let us first consider a simple branching point £}, where the two branches of the function A ({2) have equal
values. Considering a small neighbourhood of the point €}y and taking small changes AA({2), we need to
examine only a quadratic equation for AX with coefficients that depend on ). At the point (1 = Q, the
discriminant should vanish. In the simplest case, in a small neighbourhood of the point 0 the discriminant may
be viewed as a linear function of ). Then both roots A () are real on one side of the branching point and both
are complex on the other side. In this case, the allowance for additional terms containing k1 will shift the

branching point Q by AQ~ k!, which may only result in a bounded growth rate of the solution, i.e. instability
but not ill-posed behaviour.
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The conclusion is false if the discriminant of the original problem does not contain a linear term and starts
with a quadratic term. In this case, however, the point {}; may be regarded as the result of confluence of two
branching points. It follows from Sec. 4 that in this case the group velocity diagram is tangent to the boundary,
i.e. the velocity of one of the weak shocks is zero in the coordinate system attached to the boundary. This
corresponds to the boundary of the region of an evolving (and hence well-posed) shock. The cases when the
function A (€2) has real branching points of multiplicity greater than two have not been considered.

6. LOSS OF SMOOTHNESS DUE TO DISTURBANCE IN REFLECTION FROM A
NEUTRALLY STABLE BOUNDARY

One of the important properties of the solution of problem (1.1), (1.2) in the case of neutral
stability is the loss of smoothness associated with the appearance of one or several real zeros of the
function D, () that generate real poles of the solution U*({). For these cases, we do not have
bounds that ensure the same smoothness for the solution as for the initial data [8, 9]. Below we
propose a simple, though non-rigorous, explanation of the phenomenon of loss of smoothness.

The loss of smoothness is easily noted in the asymptotic form of the solution (1.8). The poles of
the function UX (2) obviously make a contribution proportional to k in the evaluation of the inverse
Laplace transform with respect to time (integration over w = k{}):

\ .{-ﬁ% et de — kA (k, kQy) elrtet

As a result, the function that corresponds to the residue and represents the response of the
boundary will tend more slowly to zero a k— o« than the function A (k, ) that represents incident
disturbances.

We will now propose a different interpretation of this issue, which makes it possible to trace the
process over time. Since each pole isolates a certain value of {)y, and the part of the solution
associated with the residue is obtained as an integral over an arbitrarily small circle around the point
)y, the latter implies that this part of the solution is actually a sum of n plane waves corresponding
to real A (o).

Assume that there is at least one arriving wave () and one outgoing wave (v). This restriction is
unimportant and is used only for simplicity. The boundary condition on x = 0 is written in the form

dv

dv du fu
o =4

- Qo—é; = Ao+ B-@- 6.1)

Here we assume that the derivatives with respect to x have been eliminated from the boundary
conditions using equations for # and v. The function D, (£),) defined by the operator on the
left-hand side of the equality (6.1) has a zero at Q = Q. The function u(t, y) is assumed to be
known. Passing to a coordinate system that moves along the y-axis with velocity )y, we obtain from
(6.1) in this system that the partial derivative of v with respect to ¢ is expressible linearly in terms of
du/at and du/dy. Hence we see that the y-smoothness of the outgoing disturbance v may be an order
of magnitude less than the smoothness of the arriving disturbance u.

Note that a similar result follows directly from relationships (1.7}, (1.8) after taking inverse
Fourier-Laplace transformations.

7. ON THE POSSIBILITY OF DESCRIBING DISTURBANCES ON THE BOUNDARY BY A
DIFFERENTIAL EQUATION

Note that the left-hand side of the equation D,(w, k) =0, where w =k, defining the
eigenvalues of problem (1.1), (1.2) is not a polynomial in w and k, because it contains the quantities
Ao, k) that depend in a complicated manner on their arguments and D,, includes only A that
correspond to outgoing waves. Therefore, a partial differential equation cannot be associated with
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the above equation. However, some pseudodifferential equation satisfied by the solution U on the
boundary can be associated with this equation:

Dt (9/dt, d/dy)u = f (y, ¥) (7.1)

where u is any of the unknown functions, f describes the effect of the disturbances arriving on the
boundary and the function D,,' is not a polynomial in its arguments, i.e. it is not a differential
operator: it is only understood in the sense that the Fourier-Laplace transformation of D, }
produces D,, (w, k). If all the roots A; occur in some expression symmetrically, then by a well-known
theorem in algebra [12] such symmetric algebraic functions of \; can be expressed in terms of the
coefficients of the equation satisfied by A, i.e. in terms of polynomials of w and k. Therefore, if we
act on both sides of (7.1) by the product of the operators D,,;', which are identical with D, except
that each contains other roots A; so that the product is symmetrical in all roots, we obtain

D (8/8t, 3/3y) = Dp1'Duy’. . . Don'Dytu = DyytDyst. . . Doy (7.2)

where, by the above argument, the operator D (d/d¢, 3/dy) is a polynomial in its arguments, i.e. a
differential operator. Thus, the original mixed boundary-value problem (1.1), (1.2) has been
reduced to a Cauchy problem for one differential equation (7.2) of a high order. For gas dynamics,
this result has been obtained by a different method in [10].

Note the special structure of the right-hand side of equality (7.2), which ensures that the solutions
of Egs (7.1) and (7.2) correspond. If we consider a problem with non-zero initial conditions, then
certain constraints should be imposed on these conditions for Eq. (7.2) so that the solution also
satisfies Eq. (7.1).

Note that the use of Eq. (7.2) in practice is difficult for two reasons. First, the order of the resulting equation
is very high: the number of factors in D is C,™, where m is the number of waves moving away from the
boundary and 7 is the order of the system. Second, the function D (w, k) has “redundant” zeros on other sheets
of the Riemannian surface over the o plane which are not needed for stability analysis. These zeros, however,
do not have an effect due to the special form of the right-hand side of Eq. (7.2).

8. ON NEUTRALLY STABLE SHOCK WAVES IN MAGNETOHYDRODYNAMICS

As an application, consider the existence of neutrally stable magnetohydrodynamic shocks. We
will consider only fast shock waves with the magnetic field perpendicular to the shock surface on
both sides. The shock wave is fast if [13] A= B%(4mpu?) <1, where B is the magnetic field strength
and u and p are the velocity and the density of the gas behind the shock.

It has been previously shown [5] that the magnetic field does not affect the stability criterion of
such a shock wave: the equation for the disturbance eigenfrequencies is independent of B and has
the form

[2M2 — 6 —1 — (6 — )oM?]z22 — 2 (8§ — M)z + (6 — 1) — 1)=0
2= o/h—1 8.1

Here z is the perturbation frequency (in units of ) in the coordinate system attached to the gas
behind the shock, o=p/py>1 is the density ratio on the shock, & = —(pu)?(81/p/dp)y is the
dimensionless derivative along the shock adiabatic and M <1 is the Mach number behind the shock.
The gas velocity u is taken as the characteristic velocity.

For an ideal gas

1 v+ 1) M2 24+ (v— 1) M2
b=wg Tmramnks M TUEEIST (62

where M, is the Mach number of the incident flow. Note that z satisfies the dispersion equation for
magnetosonic waves:
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2 (42 o) (14 )2 4 e (1) = 0 (8.3)

As we have shown above, the transition from stability to neutral stability occurs when the
eigenfrequency equation (8.1) (the function D,,) has a root corresponding to a disturbance that
separates the arriving and the outgoing waves, i.e. to a disturbance with zero x-component of the
group velocity in the coordinate system attached to the shock wave:

dw/oh = 0 (8.4)
Eliminating k,/A from the relationships (8.2), (8.3), and z = w/A — 1, we obtain

(A2 +—%?)Za+('ﬁlr + 7;;"‘ A‘)z‘—-—-zﬁ«{‘i;-z"—-
- E -y (8.5)

For A% =0, Eq. (8.5) has the root z = —1/M?, which corresponds to gas-dynamic disturbances,
and the four-fold root z = 0. Since the shock is fast, it may interact only with fast magnetosonic
disturbances, which are continuously generated from gas-dynamic disturbances as 42 is increased.
For small A2, we obtain for the relevant root from (8.5)

2= —M2( +a), a=M(@1— M)4* <1 (8.6)

The condition for a transition from stability to neutral stability is that this solution equals the root
of Eq. (8.1). Substituting (8.6) into (8.1), we obtain the value 3 = §, that corresponds to the
boundary between stable and neutrally stable shock waves

81==0, + ca 8.7)

oM MP—1 B 202
o= GEL T ST oM 1

8
From (8.7) it follows that the magnetic field increases the region of neutral stability compared
with the case when B = 0, when this region is located to the left of the point 8 = 8.

Substituting (8.2) into (8.7), we find that in an ideal gas a strong (M. > 1) shock transfers to
neutral stability for a magnetic field strength

8ry?
PNV I 2y —1

B> aw VoaMaf(¥), f(¥)=
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CALCULATION OF ROTATIONAL DERIVATIVES FOR
“LOCAL” INTERACTION OF A FLOW WITH THE SURFACE
OF A BODYT

A. 1. BunmMovicH and A. V. DUBINSKII
Moscow

(Received 2 July 1991)

The rotational derivatives of the force and moment characteristics are calculated for solids of revolution
that move at an angle of attack with small angular velocity. Formulas for rotational derivatives of the second
order are derived and analysed for the general class of “local” interaction models of the flow with the
surface of the body.

THE DEVELOPMENT of analytical methods of calculation for rotational derivatives in the non-
translational motion of bodies in free-molecular flow is considered in [1-3]; corresponding methods
for the intermediate rarefied gas flow region are developed in [2, 4, 5]. The approach proposed in [6]
is intended for a fairly general class of “local” models describing the interaction of the flow with a
rotating body; the implementation of this approach has led to working formulas for first rotational
derivatives [6, 7]. In this paper, the proposed approach is further developed for second rotational
derivatives.

In the attached coordinate system x, , x,, x3 shown in Fig. 1, the expression for the radius vector
of a point on the surface of the body can be represented in the form

r = @ (p)x,° + p cos 0x,° - p sin 6x,°

where x,%, x,°, x3° are the unit vectors of the coordinate axes; the function ®(p) defines the
generator of the solid of revolution with a plane maximum middle section of radius R, and

@ (0) =0, D' (0) >0, D (p) >0, 0<p <R P (R) < oe

The axes are oriented so that the translational velocity vector v is in the x;, x, plane making an
angle m — o with the x; axis

Vo = —Vq €08 az,’ + v, sin ax,’

t Prikl. Mat. Mekh. Vol. 56, No. 1, pp. 52-57, 1992.



